A Lattice Boltzmann Method with Adaptive Mesh Refinement (AMR) for the simulation of gas-liquid flows

نویسندگان

  • Zhao Yu
  • Liang-Shih Fan
چکیده

Two-phase flows with dynamic interfaces are ubiquitous in daily life as well as in many industrial applications. Gas bubbles and liquid droplets are typical forms of these twophase flows. In chemical engineering, understanding the dynamics of these bubbles and droplets is crucial to the design and operation of the two-phase flow reactors, ranging from microfluidic devices to large systems such as bubble columns and three-phase fluidized beds. In recent years, advanced Computational Fluid Dynamics (CFD) simulation has been increasingly used to study the multiphase flow problems. In these CFD simulations, the interactions between different phases, including the various forces on the bubbles/droplets, need to be specified using closure models, which come from either experiment correlations, or more detailed numerical simulations. Direct numerical simulation (DNS) is capable of providing such closure relations, by detailed simulation of the motion of individual bubbles/droplets in which the motion of the gas-liquid interface is directly resolved. Several types of DNS methods have been developed, and they can be largely put into three categories: the front tracking method, the front-capturing method, and the diffused interface method. The front tracking method uses Lagrangian tracking particles to form a surface mesh that represents the interface, and these particles are convected by the local flow field in each time step to update the location of the interface. The front-capturing methods include the Volume of Fluid (VOF) and the level set method, in which the interface is represented by the contour of a scalar field, which can be the volume fraction of the gas phase in the computational cell (in VOF), or the distance to the interface (in level set method). The interfaces in both the front-tracking and front capturing methods are considered “physically sharp” with zero thickness, although they are numerically smoothed to avoid the abrupt discontinuity which causes numerical problems. In contrast, the interface in the diffused interface method is physically diffused. In other words, it has a finite thickness, and the density distribution inside the interface is determined by the thermodynamic laws.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

External and Internal Incompressible Viscous Flows Computation using Taylor Series Expansion and Least Square based Lattice Boltzmann Method

The lattice Boltzmann method (LBM) has recently become an alternative and promising computational fluid dynamics approach for simulating complex fluid flows. Despite its enormous success in many practical applications, the standard LBM is restricted to the lattice uniformity in the physical space. This is the main drawback of the standard LBM for flow problems with complex geometry. Several app...

متن کامل

Numerical analysis of gas flows in a microchannel using the Cascaded Lattice Boltzmann Method with varying Bosanquet parameter

Abstract. In this paper, a Cascaded Lattice Boltzmann Method with second order slip boundary conditions is developed to study gas flows in a microchannel in the slip and transition flow regimes with a wide range of Knudsen numbers. For the first time the effect of wall confinement is considered on the effective mean free path of the gas molecules using a function with nonconstant Bosanquet para...

متن کامل

Towards adaptive kinetic-fluid simulations of weakly ionized plasmas

This paper describes an Adaptive Mesh and Algorithm Refinement (AMAR) methodology for multi-scale simulations of gas flows and the challenges associated with extending this methodology for simulations of weakly ionized plasmas. The AMAR method combines Adaptive Mesh Refinement (AMR) with automatic selection of kinetic or continuum solvers in different parts of computational domains. We first re...

متن کامل

Gas-liquid Relative Permeability Estimation in 2D Porous Media by Lattice Boltzmann Method: Low Viscosity Ratio 2D LBM Relative Permeability

This work is a primary achievement in studying the CO2 and N2–oil systems. To predict gas-liquid relative permeability curves, a Shan-Chen type multicomponent multiphase lattice Boltzmann model for two-phase flow through 2D porous media is developed. Periodic and bounce back boundary conditions are applied to the model with the Guo scheme for the external body force (i.e.,...

متن کامل

Implementation of D3Q19 Lattice Boltzmann Method with a Curved Wall Boundary Condition for Simulation of Practical Flow Problems

In this paper, implementation of an extended form of a no-slip wall boundary condition is presented for the three-dimensional (3-D) lattice Boltzmann method (LBM) for solving the incompressible fluid flows with complex geometries. The boundary condition is based on the off-lattice scheme with a polynomial interpolation which is used to reconstruct the curved or irregular wall boundary on the ne...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008